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Full-Wave Analysis of Radiating Planar
Resonators with the Method of Lines

Achim Dreher, Member, IEEE, and Reinhold Pregla, Senior Member, IEEE

Abstract— The method of lines (MoL) is extended to analyze
radiating planar resonators by the use of absorbing boundary
conditions. For stratified layers, an equivalent network is derived
to set up a system equation by simple multiplication of hybrid
matrices. As an example, the complex resonant frequency of a
microstrip patch is computed and compared to results achieved
with the integral equation method in spectral domain. The radi-
ation in the near-field region is depicted by a vector plot of the
energy flow, given by the real part of the Poynting vector.

1. INTRODUCTION

HE full-wave analysis of open planar microstrip patches

without any approximations is a difficult task. It usually
involves extensive mathematical preparations that become
even more complicated if the complex resonant frequency,
as a solution of an eigenvalue problem, must be determined
[1], [6].

On the other hand, the method of lines (MoL) is a simple and
efficient tool for the analysis of planar waveguide structures
with multiple layers and arbitrary shape. The Helmholtz equa-
tion is discretized in two directions of coordinates, whereas an
analytical solution is used in the remaining direction. Because
of the relation to the discrete Fourier transform, exact results
are achieved with just a few lines [2].

In this paper, the MoL is extended to analyze radiating
microstrip patches. To limit the area of discretization, the
structure is enclosed by walls on which absorbing boundary
conditions are used to simulate the free space [7], [9]. Since
the discretization is performed in two dimensions, only four
of these walls are necessary. Structures with multiple layers
can be treated as series connection of two-ports represented by
hybrid matrices. This procedure is similar to the immittance
approach in spectral domain, but the splitting into TE- and
TM-modes is not necessary.

'As an example, the complex resonant frequency of a rect-
angular microstrip patch (Fig. 1) is computed and compared
to results obtained by the integral equation method. The
energy flow, given by the real part of the Poynting vector,
is determined in the whole discretized area.

II. ANALYSIS

A. Absorbing Boundaries and Discretization

Assuming a time dependence exp (jwt), the wave equation,
normalized by ko, for the two independent field components
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Fig. 1. Simple microstrip patch.
e,, h, can be written as
Ly = (D2+ D2+ DZ+¢e,)¢=0 @
with
o2 02 0?
DZ=_— D= _— Di=_—.
rT ox2 v 92 T pF2 @)

To limit the area of discretization, the structure must be
enclosed by walls as shown in Fig. 2 and, owing to the
radiation, these walls must simulate the free space to avoid
reflections. This can be achieved by the use of absorbing
boundary conditions (ABC) for the field components in this
place [9]. To this end, the Helmholtz operator L is factored
such that

Lyp=LTL ¢ =0 3
from which follow the boundary conditions
Lfy=0 Lyy=0 @
with
L¥ = Dz + jy/er /14 52
1

== (D% + D) 6)

8

o

in z-direction and

LE =Dy £ Ve /14 5%;

2y = — (D2+D3) ©)
T
in z-direction. The plus sign is related to waves traveling in
the positive, the minus sign to those traveling in the negative
direction of coordinates. For a unique solution, the sign must
be chosen properly at each wall so that only waves incident
from the interior of the enclosed structure are admitted.
Unfortunately, due to the radical, the boundary conditions
in (5) and (6) are nonlocal, so they cannot be applied directly
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Fig. 2. Microstrip patch with discretization lines and absorbing boundaries.

yT .

Fig. 3. Stratified dielectric with corresponding notations.

to the method of lines. The radical is therefore approximated
by a polynomial of the form

V1+ 52 & pg + pas® @

on the interval s € [—j, 4], in which the parameters py and
po are determined by the method of approximation and must
fulfill the relationship

1
P2 <po < — +p2 8
4p2 ®
to meet the demand for an outgoing wave {6]. From now on,
the absorbing boundaries are no longer ideal. Their reflection
coefficient is a function of the angle of incidence [7], [10].
The boundary conditions can now be written as

LFyp=0 LFyp=0 ©)
with
Lt = D%JrD%‘Trj«—‘/a Ds + &, 220
Dz2 Da2
L’f:D%——f—D%:Fj\/aDg-I—er@. (10)
D2 Pz2

In the method of lines, the discretization of the wave equation
for the field components e, and h, is performed with a set
of two line systems shifted by half the discretization distance
h; . (Fig. 2) [3] and, in the case of electric or magnetic walls,
dual boundary conditions have been used to set up a system
matrix in an elegant way [4].

To keep this advantageous procedure, dual boundary con-
ditions have to be derived for the absorbing boundaries too.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 8, AUGUST 1993

For this reason, the operator equations (9) are applied to the
tangential field components e,,e, and e;,e,, respectively,
resulting in

oh
L'¥e,=0 L[F-2=0 11
e - an
on walls parallel to the z-axis and
% g pE -0 (12)
0z

on walls parallel to the z-axis [6].

Combining (1) with (11) for the field component e, and
(1) with (12) for h. respectively, the ordinary differen-
tial equations

(D%:i:j\/g; Dy — (@—1>ar>ez=0 (13)

D2 D2

(Dgij Ver p, (pzo - 1)ar)hz =0 (14

D22 D22

are obtained. Their solutions result in the propagation constants
of waves not being reflected by the absorbing wall. The
accompanying angles of incidence, following from (13), e.g.,
are [6]

1
2pw2

c0s012 = 5— (1% V1= 2psalpao - 222) ) - (15)
From the discretized form of (13) and (14), the components

on the walls can be determined as

€0 = —0z€x1 + bpesn (16)
ezNI+1 — "‘a.tezNz + bmesz,J (17)
hzO = _afzhzl + bzhz2 (18)
th,~,+1 = _a’ZhZNz + bZh'ZNz——l (19)
with
2pac,z2 + (px.zO - pm,zZ)ng,z
Qg,z = —2 -
2pm,z2 + I 2

2 x,z2 T ] x,z N

bm,z = Paz2 — o, Ng,z = hx,z\/a (20)

B 2pcc,z2 + jnz,z
and, in this way, the boundary conditions are included in the
difference operators [7], [8].

Due to the formulation of dual boundary conditions, the
second derivatives are given by

_, 8%,

B} 55 — DanDacE, = —Py.F, (21)
—y 0%h,

T W fand DzethHz = _Pwth . (22)

Similar representations can be found for the matrices P, 4.
The remaining boundary conditions for the derivatives of
h. and e, in (11) and (12), respectively, are now fulfilled
automatically.

Since the operators are independent in both directions of
coordinates, their two-dimensional form can be obtained by
using the Kronecker product [5]

D,—D.=D.®I,. (23)
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Fig. 4. Equivalent two-port representation of the stratified dielectric.

Depending on the order of operation, the dimensions of the
identity matrices I, . have to be chosen properly, since the
derivatives of the discretized components do not coincide with
the corresponding line system.

B. Transformation

The discretized wave equation

(ID2-P.-P.+e1)w =0

24
is transformed by

v =TT (25)

to get a system of uncoupled ordinary differential equations

o~ ~2\ —
(Ipz-%; )@ =o0. (26)
T is the transformation matrix for the two-dimensional case
given by

T=T,T, 27)

) — ——2
and T, , are the eigenvectors of P, , = h, .P. . accord-
ing to

T,'P,.T,. =, (28)
Eigenvalues —Xiz and transformation matrices T, , are cal-
culated numerically using appropriate standard software [12].
The numerical effort is minimal because their dimensions are
determined by the number of lines in only one direction.
The two-dimensional eigenvalues are
~2

= —2 =2 —2
A, =13, A=A, 01, 29)
so that
~2 22 2
=X, + X, — erl 30)

Owing to (21) and (22), there exists a close connection
between eigenvalues and transformed difference operators on
both line systems [7], [8].

Suitable solutions of (26) are
U = coshkyy- A + sinh kg7

‘B (1)

within the layers, and

AV — c"kF—

7. A (32)

for the open top layer. In the latter case, the sign of the radical,
following from (30) for kg, must be chosen such that
T{kok@i]} >0 (33)

to get an outgoing wave only.

C. System Equation

The derivation of a system equation is done in the same
way, as described in [2], and after some algebraic manipula-
tions a hybrid matrix is obtained linking the tangential field
components at both interfaces of an arbitrary dielectric layer

(Fig. 3),
E]l_[V: Z,][E.
HRVE S
with
F5 ﬁzi = . Ewi ‘
H; =no [_ﬁwi] E;=j {Ezz] . (35)

At the interface to the open top layer n the relation between
the tangential field components is

H,=Y.E, (36)
with
«'k:\—l 0 — =
v, = | 9 [zezh Oen } (37)
0 kfge 6he —Ege

Herein, 6.5, and 8. are the transformed difference operators.
More details of the definitions of all quantities can be found
in [7] and [2]. Notice, however, that some changes have been
made to the vectors H, and E; .

Due to the continuity of the tangential field components at
the interfaces, the stratified structure can be represented by a
series connection of two-ports (Fig. 4) with a short (E¢ = 0)
for the metallization at the bottom of the structure and a
termination with an admittance Y, at the top.

Cascading the matrices by simple multiplication yields

F =K., T.=KJF., (38)
with
K.-[[F. K- ] &
=1 i=m+1
@) -FE

With the inclusion of the terminations, the tangential field
components on the lower (—) and the upper (+) side of the
interface m with metallization are related by

H,=-Y.E, (40)
" --V.E (41)
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with
- 1
Yu = —Ku22Ku12 (42)
— _— J— -] — — —
Y,= (Ko~ YnKoiz) (YuKo1—Koi). (43)

Finally, the continuity equations for the tangential field com-
ponents in this interface,

=t _ = =t w7 Jom
Em:Em m_H :Jm:n0|:j :| (44)
must be taken into account and the system equation
Z.3,, =8, (45)

with Z = (Y, +?o)_1 in the transform domain able to
be formulated. To obtain an eigenvalue problem, (45) is
transformed back to spatial domain, and the condition that
the tangential electric field components must vanish on the
patch leads to

ZredJred =0 (46)

with a reduced system matrix Z,.q . This equation has to be
solved for the complex resonant frequency w = w’ + jw” .

In general, the transformation matrices are different for each
layer. In this case, the hybrid matrices are transformed back
to spatial domain before cascading, according to

K, =T,K,T;! (47)

with
T; = Diag (T T)

T, = Diag (Thi, Tez) . (48)

D. Radiation

The radiated power is given by the real part of the Poynt-
ing vector

pr = R{e xh*}. (49)

Since, in the method of lines, the field quantities are ob-
tained in discretized form, the components of the Poynting
vector are
P,=E,-H;-E, Hj
P,=E, H,-E, H}
-E, H.

P.=E, H;

v (50)

The dot (-) means multiplication according to the Hadamard
product of vectors [11]

A-B=(ab,). (51)

This multiplication has to be performed at the same locus,
so that interpolations are necessary due to the shifting of the
line systems.

It can be shown that the imaginary part of the complex
resonant frequency, which is obtained as a solution of a
radiating system with no independent sources, must be posi-
tive, resulting in a spatially growing wave [6], whereas the
amplitude of the current on the patch decreases with time. To
compute the radiation property, a constant in time energy flow
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must be assumed. So, in the following, the imaginary part of w
is set to zero. This means, physically, that the eigensolutions
form an impressed source to compensate for radiation losses.

From the system equation follows the eigenvector J,,, which
is transformed back to spectral domain to determine the field
components E,, in the plane of the patch. By means of
the hybrid matrices (34), (40), and (41), the tangential field
components in all interfaces of the layers are known.

The normal components H, and E, can be derived in the
following way. From Maxwell’s equation

vV X e = —jwih (52)
follows
nghy:j(%ex—a—ajez>. (53)
Discretization and transformation leads to
oy = j(6:4E. — 8.5, ). (54)
In the same way, starting from
V X h = jwegee (55)
the relation
E, =L (5,0, - 5.1, (56)
i

can be obtained.

The y-dependence of all field components in spectral do-
main along the corresponding lines within the sth layer results
from (31) by eliminating the unknown coefficient vectors

Fy) = a(@lﬁ_l + §2E) (57)
with
&= (Ey sinh Eydl) B (58)
8 = Eg(sinh k5 (7, y)) (59)
S; = Eﬂ(Sinh kg (g yz——l)) (60)

The metallization on the back of the bottom layer leads here
to the simple relation

F = §F, (61)
with
~ - - -1
§ = sinh kg'y'(sinh kgdl) (62)
if F = E,, E,, or Hy, and
N - N\ -1
S = cosh kyy(cosh ky dl) (63)

for E,, H,, and H, .
The function within the open top layer (n + 1) following
from (32) is

F(y) = SF, (64)
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Fig. 5. Real part (a) and imaginary part (b) of the complex resonmant
frequency f = f' 4+ jf" of a rectangular microstrip patch as a function
of length 1. MoL, o Nam and Itoh [1]. (¢, = 9.6, w = 0.635 mm,
d = 0.635 mm . For good convergence, the distance [a, b} between the walls
is more than one effective wavelength.)

with

S = ka7 (65)
The sign of the radical must be chosen according to (33).

The field quantities are new transformed back to spatial
domain and the Hadamard products are carried out after a
straight-line interpolation.

III. RESULTS

A single, rectangular microstrip patch with one dielectric
layer of thickness d (Fig. 2) has been investigated. The use
of dual boundary conditions makes it possible to add electric
or magnetic walls in an easy way to utilize the symmetry of
the structure, and to reduce the amount of necessary computer
storage. A Taylor series approximation, pg = 1, p2 = 1/2,
has been used for the radical function of the operator on
every wall.

Computed results of the complex resonant frequency as a
function of the resonator length are presented in Fig. 5(a), (b).
They show a very good agreement to those achieved with the
integral equation method [1]}.

The radiated power in the principal planes of the resonator
is shown in the vector plots [Fig. 6(a), (b)]. On the magnetic
wall (z = w/2)

Pz = —€y h; (66)

Pe =0 Dy = ezh:;
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Fig. 6. Energy flow of radiated power in the principal planes of the resonator.
(@) 2 = w/2, (b) z = 1/2. (d = 1 mm, remaining data as in Fig. 5.)

and on the electric wall (z = b/2)

De — —ezh; Dy = ezh; p:=0 (67)

is valid, and so the computational effort can be reduced
significantly. Clearly, we observe the radiating edges in the
longitudinal direction, the main beam area perpendicular to
the resonator and the excitation of the surface wave.

IV. CONCLUSION

Introducing absorbing boundaries to the method of lines,
radiating devices can be analyzed (as has been shown) by the
computation of the complex resonant frequency of a single
microstrip patch. The application of the method of lines is
simple because no complicated mathematical preparation has
to be performed. All field components and the radiated power
are known in the whole discretized area, and so it is possible
to have a look at near-field phenomena and coupling effects.

Several structures with various shapes and multiple arbitrary
thin layers, as applied in hyperthermia and geophysics, can
be analyzed (Fig. 7) in the same way, as have already been
demonstrated in other publications [4], [2]. Optional metal-
lizations in the interfaces (stacked patches) can be included,
and there is no difficulty to consider radiation effects in both
vertical directions (Fig. 8). To this end, only an equation
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Fig. 7. Examples of microstrip resonators and their discretization with the

method of lines.

Fig. 8. Patch with radiation in two directions.

similar to (36) has to be taken into account at the interface
to the bottom layer.
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