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Full-Wave Analysis of Radiating Planar

Resonators with the Method of Lines
Achim Dreher, Member, IEEE, and Reinhold Pregla, Senior Memberj IEEE

Abstract— The method of lines (MoL) is extended to analyze

radiating planar resonators by the use of absorbing boundary

conditions. For stratified layers, an equivalent network is derived

to set up a system equation by simple multiplication of hybrid
matrices. As an example, the complex resonant frequency of a
microstrip patch is computed and compared to results achieved

metallization

with the integral equation method in spectral domain. The radi- substrate

ation in the near-field region is depicted by a vector plot of the Fig. 1. Simple microstrip patch.
energy flow, given by the real part of the Poynting vector.

I. INTRODUCTION

T HE full-wave analysis of open planar microstrip patches

without any approximations is a difficult task. It usually

involves extensive mathematical preparations that become

even more complicated if the complex resonant frequency,

as a solution of an eigenvalue problem, must be determined

[1], [6].

On the other hand, the method of lines (MoL) is a simple and

efficient tool for the analysis of planar waveguide structures

with multiple layers and arbitrary shape. The Helmholtz equa-

tion is discretized in two directions of coordinates, whereas an

analytical solution is used in the remaining direction. Because

of the relation to the discrete Fourier transform, exact results

are achieved with just a few lines [2].

In this paper, the MoL is extended to analyze radiating

microstrip patches. To limit the area of discretization, the

structure is enclosed by walls on which absorbing boundary

conditions are used to simulate the free space [7], [9]. Since

the discretization is performed in two dimensions, only four

of these walls are necessary. Structures with multiple layers

can be treated as series connection of two-ports represented by

hybrid matrices. This procedure is similar to the immittance

approach in spectral domain, but the splitting into TE- and

TM-modes is not necessary.

As an example, the complex resonant frequency of a rect-

angular microstrip patch (Fig. 1) is computed and compared

to results obtained by the integral equation method. The

energy flow, given by the real part of the Poynting vector,

is determined in the whole discretized area.

II. ANALYSIS

eZ, h, can be written as

with

To limit the area of discretization, the structure must be

enclosed by walls as shown in Fig. 2 and, owing to the

radiation, these walls must simulate the free space to avloid

reflections. This can be achieved by the use of absorbing

boundary conditions (ABC) for the field components in this

place [9]. To this end, the Helmholtz operator L is factored

such that

L@= L~L-@ = O (3)

from which follow the boundary conditions

L:~ = O L:~ = O (4)

with

in x-direction and

(5)

(6)

A. Absorbing Boundaries and Discretization in z-direction. The plus sign is related to waves traveling in

Assuming a time dependence exp (jwt), the wave equation,
the positive, the minus sign to those traveling in the negative

normalized by /co, for the two independent field components
direction of coordinates. For a unique solution, the sign must

be chosen properly at each wall so that only waves inciclent
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from the interior of the enclosed structure are admitted.

Germany.
Unfortunately, due to the radical, the boundary conditions

IEEE Log Nmnber 9210206. in (5) and (6) are nonlocal, so they cannot be applied directly
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Fig. 2. Microstrip patch with discretization lines and absorbing boundaries.
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Stratified dielectric with corresponding notations.

to the method of lines. The radical is therefore approximated

by a polynomial of the form

/m =,, +,,s’ (7)

on the interval s ~ [–j, j], in which the parameters p. and

p2 are determined by the method of approximation and must

fulfill the relationship

p2<po<L+p2
4p’

(8)

to meet the demand for an outgoing wave [6]. From nQw on,

the absorbing boundaries are nQ longer ideal. Their reflection

coefficient is a function of the angle of incidence [7], [10].

The boundary conditions can now be written as

L$~ = () L;&IJ = () (9)

with

In the method of lines, the discretization of the wave equation

for the field components e. and hz is performed with a set

of two line systems shifted by half the discretization distance

hz)z (Fig. 2) [3] and, in the case of electric or magnetic walls,

dual boundary conditions have been used to set up a system

matrix in an elegant way [4].

To keep this advantageous procedure, dual boundary con-

ditions have to be derived for the absorbing boundaries too.

For this reason, the operator equations (9) are applied to the

tangential field components ez, ey and e~, ev, respectively,

resulting in

on walls parallel to the z-axis and

(11)

(12)

on walls parallel to the z-axis [6].

Combining (1) with (11) for the field component e. and

(1) with (12) for h, respectively, the ordinary ditieren-

tial equations

( –D’-(:-+)ez=o’13)
D;&j&

PZ2

( –D’-(fl-l)ET)hz=O ’14)

@*j&
z

PZ2

are Qbtained. Their solutions result in the propagation constants

of waves not being reflected by the abs-orbing wall.

accompanying angles of incidence, following from (13),

are [6]

1
Cosel,’ = —

( )
1 + /1 – 4pZZ(pZ0 – pzz) .

2pz2

The

e.g.,

(15)

From the discretized form of (13) and (14), the components

on the walls can be determined as

eZo = —a. e,l + bzez2 (16)

ezN.+l = ‘%ezN. ● b%N._ ~ (17)

hzo = –azhzl + bzhZ2 (18)

hzNz,, = –a. h.N. + b.hziv. _l (19)

with

2PZ,,2 + (Puo - Pz,z2)~2,z
az,z = —2

2pz,=’ + jnZ,Z

2pZ,Z’ – jn.,,
b –– n

‘@ – 2pz,z2 + ~%>. ~,~ = ~%z- (20)

and, in this way, the boundary conditions are included in the

difference operators [7], [8].

Due to the formulation of dual boundary conditions, the

second derivatives are given by

52 ~’e.
z= 4 llZ@ZeEZ = —PZeEz (21)

~2 82hz
— -+ DJIZhHZ = —PZhHz .% &T2

(22)

Similar representations can be found for the matrices P.e,k.

The remaining boundary conditions for the derivatives of

hz and e, in (11) and (12), respectively, are now fulfilled

automatically.

Since the operators are independent in both directions of

coordinates, their two-dimensional form can be obtained by

using the Kronecker product [5]

Dz~Dz=Iz@Dz

Dz~Dz=Dz@Iz. (23)
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ku k.
Fig. 4. Equivalent two-port representation of the stratified dielectric.

Depending on the order of operation, the dimensions of the

identity matrices lZ,= have to be chosen properly, since the

derivatives of the discretized components do not coincide with

the corresponding line system.

B. Transformation

The discretized wave equation

( )
?D~–$z–$z+ET? IO=o (24)

is transformed by

IJ?=RG (25)

to get a system of uncoupled ordinary differential equations

( )-
:D;–~; I@=O. (26)

? is the transformation matrix for the two-dimensional case

given by

iF=Tz BT. (27)

——
and T~ ,Z are the eigenvectors of ~=,= = hZ,: Pz,2 accord-
ing to

T;,:~z,zT – X2z,% — %,2 . (28)

Eigenvalues ~~,Z and transformation matrices T ~ ,Z are cal-
culated numerically using appropriate standard software [12].

The numerical effort is minimal because their dimensions are

determined by the number of lines in only one direction.

The two-dimensional eigenvalues are

@ C2
AZ= I, L3T: AZ =X:231. (29)

so that

c;=i:+?:–&rT. (30)

Owing to (21) and (22), there exists a close connection

between eigenvalues and transformed difference operators on

both line systems [7], [8].

Suitable solutions of (26) are

I@ = cosh$F~. A + sinh~T~ B (31)

within the layers, and

~ ~ ~-k~ii . A! (32)

for the open top layer. In the latter case, the sign of the radical,

following from (30) for iv, must be chosen such that

T{kokvij} >0 (33)

to get an outgoing wave only.

C. System Equation

The derivation of a system equation is done in the same

way, as described in [2], and after some algebraic manipula-

tions a hybrid matrix is obtained linking the tangential field

components at both interfaces of an arbitrary dielectric lalyer

(Fig. 3),

El=[%w%]
with

‘i=”o[-%il‘i=’E:]
At the interface to the open top layer n the relation

the tangential field components is

—.
~. = YmEn

with

(34)

(35)

between

(36)

(37)

Herein, ~ch and ~h. are the transformed difference operators.

More details of the definitions of all quantities can be found

in [7] and [2]. Notice, however, that some changes have been

made to the vectors ~, and ~~ .

Due to the continuity of the tangential field components at

the interfaces, the stratified structure can be represented by a

series connection of two-ports (Fig. 4) with a short (Eo =: O)

for the metallization at the bottom of the structure and a

termination with an admittance ~n at the top.

Cascading the matrices by simple multiplication yields

with

m

Tzu+-pz z.= fj z,
i=l i=m+l

‘=[:1 “=[2a ’39)
With the inclusion of the terminations, the tangential field

components on the lower (–) and the upper (+) side of the

interface m with metallization are related by

—— ——
Hm = –~UEm (40)
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with must be assumed. So, in the following, the imaginary part of w

——
Y. = –~uzzKUl;

is set to zero. This means, physically, that the eigensolutions

(42) form an impressed source to compensate for radiation losses.

TO = (~022 – ~.~OIZ) ‘1 (~.~.11 – Kozl) . (43) From the system equation follows the eigenvector J~ which\ ,.

Finally, the continuity equations for the tangential field com-
is transformed back to spectral domain to determine the field

ponents in this interface,
components Em in the plane of the patch. By means of

must be taken into account and the system equation

with ~ = (~u + Yo)-l in the transform domain able to

be formulated. To obtain an eigenvalue problem, (45) is
(

t? a
~Ohy=j —e –—e

)

(53)

transformed back to spatial domain, and the condition that
~z.azz.

the tangential electric field components must vanish on the Discretization and transformation leads to

the hybrid matrices (34), (40), and (41), the tangential field

components in all interfaces of the layers are known.
(44) The normal components HV and ~V can be derived in the

following way. From Maxwell’s equation

v x e = –jwph (52)

(45)

follows

patch leads to

Z=.dJ,,d = O (46)

In the same way,
with a reduced system matrix Zred . This equation has to be

solved for the complex resonant frequency u = w’ + jw’i .

In general, the transformation matrices are different for each

layer. In this case, the hybrid matrices are transformed back the relation

(54)

starting from

V X h = jWEoET~e (55)

to spatial domain before ‘cascading, according to

Ki = TiKiT;l (47)

with
can be obtained.

The y-dependence of all field components in spectral do-

()
Ti = Diag ~,, T, ~,= D%(~hi~.) ~ (48)

main along the corresponding lines within the ith layer results

from (31) by eliminating the unknown coefficient vectors

D. Radiation
F(y) = a (31F,–1 + RJ?.

The radiated power is given by the real part of the Poynt-
)

ing vector with

PT = Yt{e x h*}, (49)

Since, in the method of lines, the field quantities are ob- ~1 = ~T(sinh ~F(ij, - ~))
tained in discretized form, the components of the Poynting

vector are 32= ~F(sinh~V(~-~,_l)) .

(57)

(58)

(59)

(60)

PZ=EY. H;– EZ. H* The metallization on the back of the bottom layer leads here
PV=EZ. H;– EZ. H; to the simple relation

PZ=EZ. H;– EY. H:. (50)
F = &?~ (61)

The dot (.) means multiplication according to the Hadamard

product of vectors [11] with

(
–1

A . B = (aibZ) . (51) ~ = sinh ~vij sinh ;F~l
)

(62)

This multiplication has to be performed at the same locus, if ~ = EC, ~Z, or EV, and

so that interpolations are necessary due to the shifting of the
line systems:

It can be shown that the imaginary part of the complex

resonant frequency, which is obtained as a solution of a for ~Y, Hz, and HZ .
radiating system with no independent sources, must be posi- The function within the open top layer (n + 1) following
tive, resulting in a spatially growing wave [6], whereas the from (32) is

amplitude of the current on the patch decreases with time. To

compute the radiation property, a constant in time energy flow F(y) = 3Fn (64)
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Fig. 5. Real part (a) and imaginary part (b) of the complex resonant
frequency ~ = ~’ + j~” of a rectangular microstrip patch as a function

of length 1. _ MoL, o Nam and Itoh [1]. (e, = 9.6, w = 0.635 mm,
d = 0.635 mm. For good convergence, the dktance [a, b] between the walls

is more than one effective wavelength.)

with

E = ~-k+%) (65)

The sign of the radical must be chosen according to (33).

The field quantities are now transformed back to spatial

domain and the Hadamard products are carried out after a

straight-line interpolation.

III. RESULTS

A single, rectangular microstrip patch with one dielectric

layer of thickness d (Fig. 2) has been investigated. The use

of dual boundary conditions makes it possible to add electric

or magnetic walls in an easy way to utilize the symmetry of

the structure, and to reduce the amount of necessary computer

storage. A Taylor series approximation, PO = 1, p2 = 1/2,

has been used for the radical function of the operator on

every wall.

Computed results of the complex resonant frequency as a

function of the resonator length are presented in Fig. 5(a), (b).

They show a very good agreement to those achieved with the

integral equation method [1].

The radiated power in the principal planes of the resonator

is shown in the vector plots [Fig. 6(a), (b)]. On the magnetic

wall (z = w/2)

p.=o py = ezh~ p, = –eYh~ (66)

13,67
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Fig. 6. Energy flow of radiated power in the principal planes of the resonator.

(a) x = w/2, (b) z = 1/2. (d = 1 mm, remaining data as in Fig. 5.)

and on the electric wall (z = b/2)

p. = –ezh~ PY = e. hz g?z=o (67)

is valid, and so the computational effort can be reduced

significantly, Clearly, we observe the radiating edges in the

longitudinal direction, the main beam area perpendicular to

the resonator and the excitation of the surface wave.

IV. CONCLUSION

Introducing absorbing boundaries to the method of lines,

radiating devices can be analyzed (as has been shown) by the

computation of the complex resonant frequency of a sin,gle

microstrip patch. The application of the method of lines is

simple because no complicated mathematical preparation has

to be performed. All field components and the radiated power

are known in the whole discretized area, and so it is po$sible

to have a look at near-field phenomena and coupling effects.

Several structures with various shapes and multiple arbitrary
thin layers, as applied in hyperthermia and geophysics, can

be analyzed (Fig. 7) in the same way, as have already been

demonstrated in other publications [4], [2]. Optional metal-

lizations in the interfaces (stacked patches) can be included,

and there is no difficulty to consider radiation effects in both

vertical directions (Fig. 8). To this end, only an equation
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Fig.7. Examples of microstrip resonators andtheir discretization with the

method of lines.
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Fig. 8. Patch with radiation in two directions.

similar to (36) has to be taken into account at the interface

to the bottom layer.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

S. Nam and T. Itoh, “Calculation of accurate complex resonant fre-
quency of an open microstrip resonator using the spectral domain
method,’’ J. Electrcmrag. Waves AppL, vol. 2, no. 9, pp. 635–651, 1988.
R. Pregla and W. Pascher, “The method of lines,” in Numerical
Techniques for Microwave and Millimeter-Wave Passive Structures,
T. Itoh, Ed., New York Wiley, 1989.
U. Schulz and R. Pregla, “A new technique for the analysis of the disper-
sioncharacteristics ofplanar waveguides,’’~ti, vol. 34, pp. 169–173,

1980.
S. B. Worm and R. Pregla, “Hybrid-mode analysis of arbitrarily shaped
planar microw~vg structures by the method of lines,” IEEE Trans.

Microwave TheoryTech., voLM’1T-32, pp. 191–196, Feb. 1984.
W. Pasclrer and R. Pregla, “Full wave analysis of complex planar
microwave structures,’’ Radio Sci., vol. 22, pp. 999–1002, Nov. 1987.
A. Dreher, “The method of lines and the integral equation method for the
analysis of planar antennas” (in German), Fortschritt Berichtej ser. 21,
no. 116, VDI-Verlag GmbH, Dusseldorf, 1992.
A. Dreher and R. Pregla, “Analysis of planar waveguides with the
method of lines and absorbing boundary conditions,’’ ZEEE Microwave
Guided Wave Lett., vol. I, pp. 138–140, June 1991.

[8]

[9]

[10]

[11]

[12]

R. Pregla and W. Pascher, “Diagonalization of difference operators and

system matrices in the method of lines,” IEEE Microwave Guided Wave

Lett., V01.2, PP.52–54, Feb. 1992.

B. Engquist and A. Majda, “Absorbing boundary conditions for the

numerical simulation ofwaves,’’ Math. Comput., vol. 31, pp. 629–651,

July 1977.

T. G. Moore, J. G. Blaschak, A. Taflove, and G. A. Kriegsmann,-’’Theory

and application ofradiation boundary operators,’’ IEEE Trans. Anterznas

Propagat., voLAP-36, pp. 1797–1812, Dec. 1988.

J.A. Eisele and R.M. Mason, Applied Matrix and Tensor Analysis.

New York: Wiley, 1970.

B.T. Smith, J.M. Boyle, J.J. Dongarraj B.S. Garbow, Y. Ikebe,

V. C. Kfema, and C. B. Moler, Matrix Eigerrsystem Routines —EISPACK

Guide. Berlin: Springer-Verlag, 1976.

Achim Dreher (M’92) wasborn in Hermannsburg,

Germany, on January 8,1955. He received the Dipl.-
Ing. (M. S.) degree fronlthe Technische Universitat
Braunschweig, Germany, in 1983, andthe Dr.-Ing.

(Ph. D.) degree from the FernUniversitat in Hagen

in 1992, both in electrical engineering.
From 1983 to 1985 he was with Rohde & Schwarz

GmbH & Co. KG in Miinchen as a Development
Engineer. Since 1985 he has been with the FernUni-
versitat in Hagenas a Research Assistant, where he
is engazed in numerical techniques for the analvsis--

of planar antennas and microwave structures.
.

Reinhold Pregla (M’76–SM’83) was born in
Luisenthal on August 5, 1938. He received the

master’s degree in electrical engineering (Dipl.-Ing.)
and the doctorate of engineering (Dr. -Ing.) from the

Technische Universitat Braunschweig, Germany, in
1963 and 1966, respectively.

From 1966 to 1969 he was a Research Assistant

in the Department of Electrical Engineering of

the Technische Universtat Braunschweig (Institut
fir Hochfrequenztechnik), where he was engaged
in investigations of microwave filters. After the

Habilitation, he was a Lecturer In high frequencies at the Technische
Universitat Braunschweig. Since 1973 he has held the position of Professor
at the Ruhr-Universitat Bochum, Germany, and since 1975, he has held the
position of full Professor in Electrical Engineering at the FernUniversitat (a
university for distance study) in Hagen, Germany. His fields of investigation
include microwave filters, waveguide theory, and antennas.


